Code No: R22A0002

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, January 2025

Professional H	English
----------------	---------

(ECE, CSE-CS, CSE-AIML & CSE-DS)												
Roll No												

Time: 3 hours

 Note:
 This question paper contains two parts A and B

 Part A is compulsory which carries 10 marks and Answer all questions.

 Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

 PART-A (10 Marks)
 BCLL
 CO(s)
 Marks

		<u>PART-A (10 Marks)</u>	BCLL	CO(s)	Marks
1	А	Define homonyms mentioning an example.	L1	CO-I	[1M]
	В	Mention two differences between a formal and an	L2	CO-I	[1M]
		informal letter.			
	С	What is a 'small talk'? Give an example.	L1	CO-II	[1M]
	D	What are a few situations where 'small talk' can be of use?	L1	CO-II	[1M]
	Е	Define 'idiom'. Give an example.	L2	CO-III	[1M]
	F	Write the meaning of the idiom 'black sheep' and use it in a sentence.	L3	CO-III	[1M]
	G	Find out the alternative to replace the question mark.	L4	CO-IV	[1M]
		Ornithologist : Bird :: Meteorologist : ?			
		a. Islands b. Weather c. Archaeology d. Aquatic			
	Η	Flow : River :: Stagnant : ?	L4	CO-IV	[1M]
		a. Rain b. Stream c. Pool d. Canal			
	Ι	Define the technical term: acceleration	L1	CO-V	[1M]
	J	Define the technical term: nucleus	L1	CO-V	[1M]
		PART-B (50 Marks)			
		SECTION-I			
2	А	How was Sir Mokshagundam Visvesvaraya able to	L4	CO-I	[5M]
		overcome all the challenges during the construction of			
		the Krishna Raja Sagar Dam?			
	В	It is appropriate that the nation celebrates the birth	L4	CO-I	[5M]
		anniversary of Visvesvaraya as the Engineers' Day.			
		Justify.			
		OR			
3		What are the three different types of 'if/conditional	L2	CO-I	[10
		clauses in English? Discuss their structure along with an			M]
		example sentence each.			

Max. Marks: 60

R22

		<u>SECTION-II</u>			
4		Define finite and non-finite verbs in English along with	L2	CO-II	[10M]
		2 examples each. Identify the verbs in the sentences			
		given either as 'finite or non-finite' and provide the			
		justification.			
		i. It took courage to <i>continue</i> after the accident.			
		ii. They have <i>run</i> away together.			
		iii. Leaving home can be very traumatic.			
		iv. Katie was watching TV when the phone rang.			
		v. Leave immediately when you are asked to do so.			
		OR			
5	А	Discuss the concepts of abbreviation, acronym and	L1	CO-II	[5M]
		initialism with two examples each.			
	В	Small Talks are often described as conversation starters.	L4	CO-II	[5M]
		Justify mentioning how they help people socialise.			
		SECTION-III			
6	А	Differentiate between an abstract and a precis.	L4	CO-III	[5M]
	В	Write an abstract for your proposed technical	L6	CO-III	[5M]
		presentation.			
		OR			
7	А	Explain the meanings of the following idioms and use	L2	CO-III	[5M]
		them in sentences.			
		1. call it a day 2. apple of my eye			
		3. hit the nail on the head 4. kill two birds with a stone			
		5. make a long story short			
	В	Elaborate on the positive body language required for a	L2	CO-III	[5M]
		presentation.			
		SECTION-IV			
8	А	What are the positive qualities that made Zhou Qunfei	L1	CO-IV	[5M]
		lovable to everyone?			
	В	What is the connection between the emerging	L4	CO-IV	[5M]
		smartphone industry and the success of Zhou Qunfei as			
		an entrepreneur?			
_		OR			
9	А	What is the importance of the 'career objective' sentence	L6	CO-IV	[5M]
		in a resume? Write your career objective in the resume			
	_	that you are preparing for your first job.			
	В	Discuss in detail the main sections of a resume and their	L2	CO-IV	[5M]
		contents.			
		<u>SECTION-V</u>			
10	А	Identify the errors in the use of prepositions and rewrite	L3	CO-V	[5M]
		the full sentences correcting them.			
		1. He is married to foreign woman.			
		2. This is a comfortable house to live.			
		3. I pitied on him.			
		4. The workers asked a holiday.			
		5. The property was distributed between the three			
		siblings.			

	В	What are some techniques to be followed in group discussions for making your participation more effective?	L2	CO-V	[5M]
		OR			
11	А	Write brief notes on the following formats of the reports:	L1	CO-V	[5M]
		1. Memo Format			
		2. Letter Format			
		3. Manuscript Format			
	В	Write a short report in the memo format on a technical	L1	CO-V	[5M]
		event conducted in your department.			

Code No: R22A0024

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, January 2025

Mathematics-II

(Common to all branches)												
Roll No												

Max. Marks: 60

Time: 3 hours Note: This question paper contains two parts A and B Part A is compulsory which carries 10 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

						ት ት ት					
				PAR ⁷	Г-А (10 М	<u>farks)</u>			BCLL	CO(s)	Marks
		<u>(</u> W	Vrite all	answe	rs of this p	part at o	ne plac	<u>e)</u>			
1	А	Define Inter	polatior	ı					L1	CO-I	[1M]
	В	Write the no	ormal eq	luations	for the pa	rabola y	= a + bx	$c + cx^2$	L1	CO-I	[1M]
	С	1	2						L3	CO-II	[1M]
		Evaluate \int_{0}^{1}	$x^3 dx$ by	7 Trapez	zoidal rule	(taking 1	n=4)				
	D	Write the E	uler's m	odified	method for	ormula			L1	CO-II	[1M]
	Ε	Form the	partial	differe	ential equ	ation by	y elimi	nating th	ne L3	CO-III	[1M]
		arbitrary fu	nction f	rom z =	$=f(x^2+y)$	$y^{2})$					
	F	Solve $z = p$	px + qy	$+ p^{2} -$	$-q^2$				L3	CO-III	[1M]
	G	2 5	κ Γ						L5	CO-IV	[1M]
		Evaluate J	ydydx								
	н	0 () 1						τ5	CO-IV	[1]
	11	Evaluate	$\int \int xyz dx$	x dy dz					LJ	0.11	
		J J 0 0) 0	2							
	Ι	If $\overline{F} = x\overline{i} + \overline{z}$	$y\overline{j} + z\overline{k}$,	, then fi	nd $div \overline{F}$				L5	CO-V	[1M]
	J	State Gauss	Diverge	ence the	eorem				L1	CO-V	[1M]
			C	PAR'	Г-В (50 М	<u>farks)</u>					
				S	ECTION	<u>-I</u>					
2		Using Gaus	s backw	ard diff	ference for	mula, fir	nd y(8) f	from the	L3	CO-I	[10M]
		following d	ata:	1		1					
		Х	0	5	10	15	20	25			
		У	7	11	14	18	24	32			
2		TT ' N T (• 1	1 1	OR	· · ·	1 0	1.4	T =	CO I	C = N 43
3	A	Using Newt	ton's bac	ckward	interpolat	tion form	iula finc	l the	L5	CO-I	[5M]
		Voor	1041	ear 19/	0	1071	1001	1001			
		I ear Dopulatio	1941	1931	1901	19/1	20	52			
		n in lakhe	12	15	20	21	37	32			
	B					Xai			13	CO.I	[5M]
	~	() [-4 - 1]	- 4 :	4 La a 4 La a	\dots $n - ab$	1	. <i>E</i> . 11			~~//	

Obtain a relation of the form $y = ab^{x}$ for the following data by the method of least squares

		x 1 2 3 4			
		y 6 11 18 27			
		SECTION-II		~ ~ ~~	
4		Find a real root of the equation $f(x) = x^3 - x - 1 = 0$ using	L5	CO-II	[10M]
		bisection method			
5	٨	OR	т 2	СОП	[5]/[]
5	A	Evaluate $\int_{0}^{0} \frac{1}{1+x^2} dx$ by using simpson's $\frac{1}{3}$ rule	LS	0-11	[5][1]
	В	Solve $\frac{dy}{dx} = x + y + xy$, $y(0)$ for $y(0.1)$ by taking $h = 0.025$	L3	CO-II	[5M]
		using Euler's method			
6	٨	Setue of ten of ten of ten of ten of	T 5	CO III	[5]/[]
0	A D	Solve $p \tan x + q \tan y = \tan z$	L3		[3]VI] [5]VI]
	В	Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6 e^{-3x}$ by method of	LJ	CO-III	[5]/1]
		separation of variables			
7	٨	OR	τ5	CO III	[5]/[]
/	A	Solve $x(y-z)p + y(z-x)q - z(x-y)$			
	В	Solve $p^2 + q^2 = x + y$ by Charpit's method	L3	CO-III	[5M]
0		<u>SECTION-IV</u>	т 2		[~] (]
8	A	Change the order of integration in $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} f(x, y) dx dy$	L3	CO-IV	[5M]
	В	Evaluate $\iint r^3 dr d\theta$ over the area included between the circles	L5	CO-IV	[5M]
		$r = 2\sin\theta$ and $r = 4\sin\theta$			
		OR		~ ~ ~ ~ ~	
9		Find the area of the region bounded by the parabolas $y^2 = 4ax$	L5	CO-IV	[10M]
		and $x^2 = 4ay$			
		SECTION-V			
10	А	Find div F and curl F where $F = grad(x^3 + y^3 + z^3 - 3xyz)$	L3	CO-V	[5M]
	В	Find the angle between two surfaces $x^2 + y^2 + z^2 = 9$ and	L3	CO-V	[5M]
		$z = x^2 + y^2 - 3$ at (2, -1, 2)			
		OR			
11		Verify Stokes theorem for $\overline{F} = (x^2 + y^2)\overline{i} - 2xy\overline{j}$ taken round the rectangle bounded by the lines $x = \pm a, y = 0, y = b$	L3	CO-V	[10M]

R22

Code No: **R22A0021**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, January 2025

Applied Physics

(CSE,CSE-AIML & CSE-DS)										
Roll No										

Time: 3 hours

Max. Marks: 60

Note: This question paper contains two parts A and B Part A is compulsory which carries 10 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks. ***

		<u>PART-A (10 Marks)</u>	BCLL	CO(s)	Marks
		(Write all answers of this part at one place)			
1	А	Why do we need pumping in lasers	L4	CO-I	[1M]
	В	Calculate the acceptance angle of an optical fiber, if the	L5	CO-I	[1M]
		refractive indices of core and cladding are 1.564 and			
		1.498 respectively			
	С	What are matter waves	L1	CO-II	[1M]
	D	What is the ratio of first and fourth excited energy states	L3	CO-II	[1M]
		of a particle in potential box			
	E	Explain the term periodic potential	L2	CO-III	[1M]
	F	Draw the energy band diagram in case of metals	L3	CO-III	[1M]
	G	Give the examples of pentavalent impurities	L2	CO-IV	[1M]
	Η	Illustrate how Fermi level varies with temperature in N-	L6	CO-IV	[1M]
		type semiconductor			
	Ι	Define electric displacement vector?	L3	CO-V	[1M]
	J	What is the main difference of soft and hard magnetic	L2	CO-V	[1M]
		materials			
		PART-B (50 Marks)			
		SECTION-I			
2	А	Explain the construction and working of He-Ne gas	L2	CO-I	[6M]
		laser.			
	В	List Five applications of lasers in different fileds	L3	CO-I	[4M]
		OR			
3	А	Explain the structure of an optical fiber with a neat	L2	CO-I	[4M]
		sketch			
	В	Derive an expression for Numerical aperture and	L5	CO-I	[6M]
		acceptance angle of an optical fiber			
		SECTION-II			
4	А	Explain Davission-Germer experiment that verifies wave	L5	CO-II	[8M]
		nature of electron.			
	В	Find the lowest energy, first and second excited state	L5	CO-II	[2M]
		energy of an electron confined in a box of side 1nm each			

		OR			
5	А	Deduce the 1-Dimensional time independent Schrodinger's wave equation for an electron	L5	CO-II	[6M]
	В	Explain the physical significance of wave function SECTION-III	L2	CO-II	[4M]
6	А	Explain the formation of energy bands in solids	L2	CO-III	[5M]
	В	Distinguish metals, semiconductors and insulators on the basis of band theory of solids OR	L3	CO-III	[5M]
7	А	Draw & Explain E-K diagram	L2	CO-III	[4M]
	В	Explain the concept of effective mass of an electron & derive an expression for it	L2	CO-III	[6M]
8	۸	Explain the formation DN junction	т 2	CO-W	[4M]
0	B	Explain the Hall Effect. Derive the Equation for Hall coefficient	L2 L4	CO-IV	[411] [6M]
		OR			
9	А	Derive an expression for carrier concentration of electrons in N-type semiconductor	L3	CO-IV	[5M]
	В	Explain the construction and working of LED SECTION-V	L2	CO-IV	[5M]
10	А	Define electronic, ionic and orientation polarization mechanisms	L1	CO-V	[4M]
	В	Derive an expression for ionic polarizability OR	L3	CO-V	[6M]
11	А	Explain the concept of domain theory of ferro magnetism	L2	CO-V	[5M]
	В	Draw & Explain the B-H curve of ferromagnetic materials	L4	CO-V	[5M]

R22

Code No: **R22A0022**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, January 2025

Engineering Chemistry

(CSE, CSE	-AII	ИL,	, CSE-DS & B. Fech-AIML)							
Roll No										

Time: 3 hours

Note: This question paper contains two parts A and B

Part A is compulsory which carries 10 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

		PART-A (10 Marks)	BCLL	CO(s)	Marks
		(Write all answers of this part at one place)			
1	А	What are the applications of batteries?	L1	CO-I	[1M]
	В	How will you represent the quinhydrone electrode?	L1	CO-I	[1M]
	С	List out any two effects of corrosion.	L1	CO-II	[1M]
	D	Define passivity.	L1	CO-II	[1M]
	Е	Write the preparation method for nylon - 6,6?	L2	CO-III	[1M]
	F	Classify the different types of conducting polymers.	L2	CO-III	[1M]
	G	Give two examples for shape memory alloys.	L2	CO-IV	[1M]
	Н	What is the principle involved in CVD method of	L3	CO-IV	[1M]
		synthesis of nano materials.			
	Ι	Why hardness expressed in terms of CaCO ₃ equivalents.	L2	CO-V	[1M]
	J	What is meant by disinfection ?	L1	CO-V	[1M]
		PART-B (50 Marks)			
		SECTION-I			
2	А	Write down the mathematical representation of Nernst	L2	CO-I	[5M]
		equation and mention its applications?			
	В	Explain the method of determining pH of unknown	L3	CO-I	[5M]
		solution by using calomel electrode.			
		OR			
3	А	What do you understand by electrochemical series? Give	L2	CO-I	[5M]
		its important features and applications.			
	В	Explain the working function and applications of Pb-	L3	CO-I	[5M]
		acid battery by mentioning detailed chemical equations.			
		SECTION-II			
4		Discuss all the possible mechanism of WET corrosion	L2	CO-II	[10M]
		involved in wet or galvanic corrosion.			
		OR			
5	А	Explain the corrosion control method to protect ship	L3	CO-II	[5M]
		hulls from corrosion.			

Max. Marks: 60

	В	Discuss Nickel electroless plating and mention its advantages.	L2	CO-II	[5M]
		SECTION-III			
6	A B	Differentiate thermoplastic and thermosetting polymers. Explain the preparation method and applications for Teflon and PVC.	L3 L3	CO-III CO-III	[5M] [5M]
		OR			
7	А	What are conducting polymers? Discuss the mechanism of conducting polymers of poly acetylene.	L3	CO-III	[5M]
	В	Explain the importance of bio degradable polymers. SECTION-IV	L3	CO-III	[5M]
8	А	Explain the method of synthesis of nano materials using sol-gel process	L3	CO-IV	[5M]
	В	Write a note on applications of nano materials. OR	L2	CO-IV	[5M]
9	А	Discuss the concept of carbon nano tubes and explore its applications.	L2	CO-IV	[5M]
	В	What are smart materials? Make a note on classification of smart materials and comment on its application.	L2	CO-IV	[5M]
10	Α	Calculate the amount of temporary and permanent hardness of a water sample which contain following impurity $Ca(HCO_3)_2=121.5ppm$, $Mg(HCO_2)_2=116.8ppm, CaSO_2=102ppm$	L4	CO-V	[5M]
	В	Explain the internal treatment of boiled feed water.	L3	CO-V	[5M]
11	А	Describe the Ion exchange process for softening of hard water with appropriate reactions and diagram.	L3	CO-V	[5M]
	В	What is caustic embrittlement? Discuss reasons and prevention methods for caustic embrittlement.	L2	CO-V	[5M]

Code	No:	R22A0201		F	R22					
MA	MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY									
		(Autonomous Institution – UGC, Govt. of I	(ndia)							
	I B	Tech II Semester Supplementary Examination.	ns, Janu	ary 202	5					
	Principles of Electrical and Electronics Engineering									
	(EEE, ME, ECE, IT, AE, CS&IT, CSE-CS & CSE-IOT)									
		Roll No								
T •	21				1					
Time: Noto:	3 ho	urs		Max. Ma	arks: 60					
11010.	Part	A is compulsory which carries 10 marks and Answer all out	estions.							
	Part	B Consists of 5 SECTIONS (One SECTION for each UNIT	Γ). Answe	r FIVE Q	uestions,					
	Cho	osing ONE Question from each SECTION and each Question	on carries	10 marks.						
		***		~~ ~ ~ ~ ~						
		<u>PART-A (10 Marks)</u> (Write all anguage of this part of one place)	BCLL	CO(s)	Marks					
1	Δ	<u>(write all answers of this part at one place)</u> List Basic elements of electrical circuits	L1	CO-1	[1M]					
I	B	Give the statement of Kirchhoff's Voltage Law.	L1	CO-I CO-I	[1M]					
	С	Define form factor.	L1	CO-II	[1M]					
	D	Write the relation between Maximum value and RMS	L2	CO-II	[1M]					
	F	value.		<u> </u>	F 4 3 63					
	E E	What is the function of transformer?		CO-III	[1M]					
	г G	Draw the VL characteristics of PN junction diode in	LI L1	CO-III CO-IV	[1]M] [1]M]					
	U	forward bias mode.		00-11						
	Н	Draw the output wave form full wave rectifier.	L3	CO-IV	[1M]					
	Ι	Define BJT?	L2	CO-V	[1M]					
	J	Draw the symbol of MOSFET.	L1	CO-V	[1M]					
		<u>PART-B (50 Marks)</u> SECTION I								
2	А	Explain about Mesh analysis	L2	CO-I	[5M]					
-	B	Give the statement of Norton's theorem and explain	L2	CO-I	[5M]					
		about it with an example								
		OR								
3	A	State thevenin's theorem	L1	CO-I	[2M]					
	В	Apply Thevenin's theorem to find Thevenin's equivalent	L3	CO-I	[8M]					
		10k								
		10K								
		$=$ 10 V $=$ $\geq \leq$								
		• — — B								

		SECTION-II			
4	А	Define following terms	L2	CO-II	[5M]
		a) Instantaneous value			
		b) Cycle			
		c) Time period			
	В	Analyse R circuit with necessary diagrams and	L4	CO-II	[5M]
		equations.			
		OR			
5	А	Compare three phase system with single phase system	L3	CO-II	[5M]
	В	Derive the relation between line current and phase	L3	CO-II	[5M]
		current in delta connected three phase system			
		SECTION-III			
6	А	Describe the operation and working principle of DC Generator.	L2	CO-III	[5M]
	В	Derive the torque equation of DC motor there by relate	L3	CO-III	[5M]
		Gross and shaft torques			
		OR			
7	А	Explain the working principle of DC motor.	L2	CO-III	[5M]
	В	Explain the working principle of transformer.	L2	CO-III	[5M]
		SECTION-IV			
8	А	What is the most important working of a normal PN	L2	CO-IV	[5M]
		junction diode? And explain its working with neat circuit			
		diagram (one device).			
	В	Explain the difference between avalanche breakdown	L2	CO-IV	[5M]
		and zener breakdown			
		OR			
9	А	Explain the operation of half wave rectifier with relevant	L2	CO-IV	[5M]
		circuit diagram waveforms.			
	В	Derive the equations of efficiency and ripple factor for	L3	CO-IV	[5M]
		half wave rectifier.			
		<u>SECTION-V</u>		~ ~ ~ ~	
10	A	Describe the Construction and Principle of Operation of	L3	CO-V	[5M]
	P	N-P-N transistor			
	В	Describe the operation of BJT in common Emitter mode	L3	CO-V	[5M]
		bias.			
11					[6] 6]
11	A	with a neat diagram, explain the working of n-channel	L2	CO-V	[5M]
	р	NIOSFEI in ennancement mode.	т э		[<i>E</i>] /]
	В	Describe the construction and operation of p-channel	LĴ	CO-V	
		MOSFEI in ennancement mode.			

Code No: **R22A0301**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, January 2025 Computer Aided Engineering Graphics

(EEE, ME, ECE, AE, CS&IT & CSE-CS)

Roll No										

Time: 3 hours

Note: This question paper contains f 5 SECTIONS (One SECTION for each UNIT). Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 12 marks.

*** SECTION I

	<u>SECTION-1</u>			
А	Construct a regular heptagon with a side of 30mm by general method	L1	CO-I	[6M]
В	Draw a line AB 80mm long and divide it into five equal parts. OR	L1	CO-I	[6M]
А	Construct a regular hexagon with a side of 30mm with inscribe circle method.	L1	CO-I	[6M]
В	Inscribe an ellipse in a rectangle having sides of 150mm and 100mm long.	L2	CO-I	[6M]
	SECTION-II			
A	A Point D is 25mm below the HP and 25mm behind the VP and Point B, on the H.P. and 40mm infront of the V.P. Draw its	L2	CO-II	[6M]
	projections.			
В	A line of length 70 mm is parallel and 20 mm in front of VP and 30	L3	CO-II	[6M]
	mm above HP . It is also inclined at 45° to HP and one end is on it.			
	Draw its projections.			
	OR			
	A line PQ has its end P 15 mm above HP and 10 mm infront of VP. The end Q is 55 mm above HP and the line is inclined at 35° to HP. The distance between the ends projectors of the line when measured parallel to the line of intersection of HP and VP is 50 mm. Draw the projections of the line and find its true length and true inclination with VP.	L4	СО-Ш	[12M]
	SECTION-III			
	A line PQ inclined at an angle of 30° to the HP has ends P and Q 30	L3	CO-III	[12M]
	mm and 65 mm in front of the VP, respectively. The length of the			
	top view is 60 mm and its HT is 15 mm in front of the VP. Draw the			
	projections of the line PQ and determine its true length and the VT.			
	A B A B	 A Construct a regular heptagon with a side of 30mm by general method. B Draw a line AB 80mm long and divide it into five equal parts. OR A Construct a regular hexagon with a side of 30mm with inscribe circle method. B Inscribe an ellipse in a rectangle having sides of 150mm and 100mm long. SECTION-II A A Point D is 25mm below the HP and 25mm behind the VP and Point B, on the H.P. and 40mm infront of the V.P. Draw its projections. B A line of length 70 mm is parallel and 20 mm in front of VP and 30 mm above HP. It is also inclined at 45° to HP and one end is on it. Draw its projections. C A line PQ has its end P 15 mm above HP and 10 mm infront of VP. The end Q is 55 mm above HP and the line is inclined at 35° to HP. The distance between the ends projectors of the line when measured parallel to the line of intersection of HP and VP is 50 mm. Draw the projections of the line and find its true length and true inclination with VP. A line PQ inclined at an angle of 30⁰ to the HP has ends P and Q 30 mm and 65 mm in front of the VP, respectively. The length of the top view is 60 mm and its HT is 15 mm in front of the VP. Draw the projections of the line PQ and determine its true length and the VT. 	A Construct a regular heptagon with a side of 30mm by general method. B Draw a line AB 80mm long and divide it into five equal parts. OR A Construct a regular hexagon with a side of 30mm with inscribe L1 circle method. B Inscribe an ellipse in a rectangle having sides of 150mm and L2 100mm long. <u>SECTION-II</u> A A Point D is 25mm below the HP and 25mm behind the VP and Point B, on the H.P. and 40mm infront of the V.P. Draw its projections. B A line of length 70 mm is parallel and 20 mm in front of VP and 30 mm above HP . It is also inclined at 45° to HP and one end is on it. Draw its projections. OR A line PQ has its end P 15 mm above HP and 10 mm infront of VP. The end Q is 55 mm above HP and the line is inclined at 35° to HP. The distance between the ends projectors of the line when measured parallel to the line of intersection of HP and VP is 50 mm. Draw the projections of the line and find its true length and true inclination with VP. <u>SECTION-III</u> A line PQ inclined at an angle of 30° to the HP has ends P and Q 30 I L3 mm and 65 mm in front of the VP, respectively. The length of the top view is 60 mm and its HT is 15 mm in front of the VP. Draw the projections of the line PQ and determine its true length and the VT.	A Construct a regular heptagon with a side of 30mm by general L1 CO-I method. B Draw a line AB 80mm long and divide it into five equal parts. L1 CO-I OR A Construct a regular hexagon with a side of 30mm with inscribe L1 CO-I circle method. B Inscribe an ellipse in a rectangle having sides of 150mm and 100mm long. SECTION-II A A Point D is 25mm below the HP and 25mm behind the VP and Point B, on the H.P. and 40mm infront of the V.P. Draw its projections. B A line of length 70 mm is parallel and 20 mm in front of VP and 30 mm above HP . It is also inclined at 45° to HP and one end is on it. Draw its projections. B A line PQ has its end P 15 mm above HP and 10 mm infront of VP. L4 CO-II The end Q is 55 mm above HP and the line is inclined at 35° to HP. The distance between the ends projectors of the line when measured parallel to the line of intersection of HP and VP is 50 mm. Draw the projections of the line and find its true length and true inclination with VP. SECTION-III A line PQ inclined at an angle of 30° to the HP has ends P and Q 30 mm and 65 mm in front of the VP, respectively. The length of the top view is 60 mm and its HT is 15 mm in front of the VP. Draw the projections of the line PQ and determine its true length and the VT.

OR

Max. Marks: 60

R22

6 A pentagonal pyramid of base side 30 mm and axis 55 mm and base L4 CO-III [12M] on HP its axis is perpendicular to the H.P. Axis is inclined at 30⁰ to the HP. Draw its projections.

SECTION-IV

- 7 A Draw the isometric view of a square of side 40 mm kept in Horizontal L4 CO-IV [6M] and Vertical Positions.
 - *B* Draw the isometric view of a hexagon of side 30 mm whose surface is L4 CO-IV [6M] parallel to the V.P. and a side perpendicular to the H.P. OR
- 8 *A* Draw the isometric view of a Circle (Isocircle) with a 60mm Diameter L5 CO-IV [6M] on all three Principle Planes
 - **B** Draw the isometric view of a pentagon of side 30 mm whose surface is **L4 CO-IV** [6M] parallel to the V.P. and a side perpendicular to the H.P.

L5 CO-V [12M]

From the given figure draw Front View, Top View & Left Side L6 CO-V [12M] View.

10

9

R22

Code No: R22A0502

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, January 2025

Python Programming

(Common to all branches)										
Roll No										

Time: 3 hours

Note: This question paper contains two parts A and B

Part A is compulsory which carries 10 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

		PART-A (10 Marks)	BCLL	CO(s)	Marks
		(Write all answers of this part at one place)			
1	А	List out any two python features.	L3	CO-I	[1M]
	В	What is tuple? Give an example.	L1	CO-I	[1M]
	С	Write the difference between List and Turple.	L2	CO-II	[1M]
	D	Define the membership operator. Give an Example.	L1	CO-II	[1M]
	E	What is slicing in strings?	L1	CO-III	[1M]
	F	How does NumPy array work?	L4	CO-III	[1M]
	G	Why use lambda instead of functions?	L3	CO-IV	[1M]
	Η	Give an example of the keyword argument.	L2	CO-IV	[1M]
	Ι	Write the main differences between a logical error and		CO-V	[1M]
		syntax error?	L2		
	J	List out the types of exceptions.	L3	CO-V	[1M]
		<u>PART-B (50 Marks)</u>			
		SECTION-I			
2	А	What are the features of Python?	L1	CO-I	[5M]
	В	Briefly explain the list. Give an example.	L2	CO-I	[5M]
2	٨	UK	1.0	CO 1	[/]
3	А	with suitable examples discuss any 5 built-in functions	LZ	CO-1	
	р	On strings?	т э	COI	[5]/[]
	В	Explain sets and dictionaries.	LZ	0.1	
4	٨	<u>SECTION-II</u> Write a program to display following structure given	T C	COII	[5]/[]
4	A	below:	LO	CO-II	
		22			
		+ + + + 5 5 5 5 5			
		55555			

Max. Marks: 60

	В	Explain the conditional control statements. Give an example.	L3	CO-II	[5M]
		OR			
5	А	Explain various types of looping statements in python.	L2	CO-II	[5M]
	В	Write a program to display all the elements before number 99.	L6	CO-II	[5M]
		SECTION-III			
6	А	Define array ? Explain how to import an create an array with examples	L5	CO-III	[5M]
	В	Distinguishing between array indexing and array slicing. OR	L2	CO-III	[5M]
7		Explain numpy methods and attributes with suitable example	L1	CO-III	[10M]
		SECTION-IV			
8		Explain about local and global scope of variables in python with an example?	L3	CO-IV	[10M]
		OR			
9	А	List and explain Python function arguments.	L2	CO-IV	[5M]
	В	Explain powerful lambda functions with examples.	L2	CO-IV	[5M]
		SECTION-V			
10	А	Explain any 5 exceptions that could occur in code with suitable examples?	L4	CO-V	[5M]
	В	Explain file modes in python with example. OR	L2	CO-V	[5M]
11	А	Explain exception handling in python with example.	L2	CO-V	[5 M]
	В	Write a python program to open and write the content to file and read it.	L6	CO-V	[5M]
